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The problem considered here is concerned with small disturbances of plane 
Couette flow. As is usual in such problems it is assumed that the disturbance 
velocities are sufficiently small to allow the Navier-Stokes equations to be 
linearized. There results a special case of the well-known Orr-Sommerfeld 
equation and this is solved by an exact method using a digital computer. The 
problem has previously been considered by several authors, mostly using approxi- 
mate methods and their results have been compared where possible with those 
obtained here. It was possible to proceed to values of aR not in excess of 1000 
(a being the wave-number of the disturbance and R the Reynolds number of the 
basic flow), and the results tend to confirm the belief that Couette flow is stable a t  
all Reynolds numbers. 

Introduction 
This paper presents extensive numerical results concerning the behaviour of 

infinitesimal disturbances of plane Couette flow. We consider the fluid to be 
viscous and incompressible and assume that the main flow takes place in the 
direction of the z-axis. Having linearized the equations governing the distur- 
bances we may assume that the disturbance velocity, for example in the trans- 
verse direction, is obtainable from a superposition of functions of the type 
v ( y )  exp {ia(z - @)>. In this expression a is the wave-number which is considered 
to be real and positive, while the stability of the motion depends on 5, which in 
turn depends on a and on the Reynolds number R of the basic flow. The admissible 
values of 5 must be calculated from the differential equation 

V ~ V  - ~ C " V "  + ~ 4 v  - iaR(y - 6) (v" - azv) = 0,  (1)  

of which 6 is the eigenvalue. 
Previously this problem has been considered by many authors, itlthough few of 

these have attempted a numerical solution. Their conclusions ell suggest that the 
motion is stable at all Reynolds numbers. An extensive investigation of this 
problem was undertaken by Hopf (1914)) who expressed the solutions of the above 
equation in terms of integrals involving Bessel functions. He found it neces- 
sary to approximate these functions by their asymptotic developments and as a 
result his calculations are limited to the case of small and very large aR. It is found 
that if aR is sufficiently small the eigenvalues 5 are purely imaginary and for this 
range of aR another investigation was carried out by Southwell & Chitty (1930). 
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More recently the case of a = 1 was extensively treated by Grohne (1954) by an 
approximate analysis. (For general information, see also Wasow 1953.) 

We have employed in the present paper a method of solution which is not 
unusual (at least where differential equations with real coefficients are concerned) 
but which can be very powerful when coupled with the use of a digital computer. 
It is, briefly, to replace the fourth-order differential equation by a set of algebraic 
equations whose solutions are the coefficients of an orthogonal expansion. Using 
this method we have been able to proceed to values of aR well beyond those for 
which c ceases to be purely imaginary, thus obtaining information for values of 
this parameter in a range previously considered only by Grohne in the case of 
a = 1. Furthermore, it should be pointed out that it was not necessary to make 
any approximations beyond that of truncating the matrices at  the final stage. 
Apart from the interest of the present problem itself, extensive solutions were 
required as a basis for solving the more general problem in which the lower plate 
is a t  a higher temperature than the upper one. The results of this later problem 
will be published shortly. As shall be seen below it turns out that although the 
basic differential equation has complex coefficients the analysis can be framed to 
provide a set of algebraic equations whose matrix is composed entirely of real 
elements. This is a considerable simplification which makes the problem ideally 
suited to solution on an automatic digital computer. 

1. Formulation of the problem 
Since the original three-dimensional problem can be reduced to a two-dimen- 

sional one with a lower Reynolds number (see Lin 1955, p. 27)) we take axes 
Ox' and Oy' in the plane of flow, the two plates forming the lines y' = 5 1. These 
plates we consider to move with equal and opposite velocities Vo parallel to the 
x'-axis. We may now express the problem in non-dimensional form by taking Uo 
and 1 as representative of velocity and length respectively. The basic velocity 
field is now given by 

If the disturbed velocity field is described by 

- u = Y, v = 0  ( - l < y < + l ) .  

u = u+a(x, y,t), v = v+8(x,y, t ) ,  
then on substituting these in the Navier-Stokes equations, neglecting second 
order quantities, and separating variables by the substitutions 

I 6 = u(y) exp [ia(z - &)I, 
0 = v(y)exp[ia(x-$t)], 

9 = P(Y) exp [ia(x - 591, 
we are led to a particular case of the well-known Orr-Sommerfeld equation 

a2-iaR(y-[)] [$-a2]v = 0, 
(Lin, 1955, p. 7).  

with boundary conditions 

v = dv/dy = 0 at y = t 1, where R = Uol/v. 

The criterion for stability is that Im [ < 0, while if Im 6 > 0 the flow is unstable. 
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The form of equation (1.2) is that most common, but in the present case it is 
convenient to transform the range of integration by the substitution 

y1 = * 4 y +  I), 

so that 0 < y1 < 7r. The equation (1.2) now reads 

[ ~ + h + i b y , ] [ ~ + c ] v  d2 = 0, 

dY2, 
with v = dv/dy,  = 0 a t  y1 = 0 and y1 = n, 

where for convenience we use the notation 

c = - 4a2/n2, b = - 8aR/n3, h = c - &nTTbi(l+ t). 
There will be no confusion if in what follows we write y for yl. 

2. The basic orthogonal functions 
In  general the solution v and the eigenvalue h will be complex and the function 

w(y) may be considered either as a function of a complex variable or as a complex 
function of the real variable y. If we adopt the latter interpretation we may write 

4 Y )  = %(!I) +iv2(y) (0  < y G 7.4 
where v1 and v2 are real quantities. Now both v1 and w2 may be expressed as series 
of orthogonal functions (say Y,(y)) so clearly we may put 

ro 

*(Y) C arYr(Y), (2.1) 
r= l  

where the coefficients a, are complex numbers. 
The particular orthogonal functions which we use (see also Chandrasekhar & 

Reid 1957) are those defined (except for a multiplicative constant) by the 
differential system 

a 4  Y 
dy4 = P4Y> 

Y = d Y / d y = O  a t  y = o  and y = n . J  

The orthogonality of these functions is easily verified so that we have 

I%= Y,Y ,dy=O when r + n .  
/Or 

We also introduce the abbreviations 

For further details of these functions we refer the reader to the Appendix. 
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T =  

3. Reduction of the differential equation to a set of algebraic equations 
It is now our purpose to evaluate the eigenvalues of the differential equa- 

tion (1.3). The method used is quite straightforward, being to replace equation 
(1.3) by an infinite set of linear algebraic equations containing an eigenvalue. 

We multiply (1.3) throughout by Y,(y) and integrate over the interval 
0 < y < 7r. On integration by parts we have 

- 1  0 0 0 ...- 

0 i 0 0 ... 

O O 1 O ... , S = -T2, 

0 0 0 i ... 

. . . .  - J 

On substituting for v from (2.1), interchanging the orders of integration and 
summation, this becomes: 

W 

C [(pi + Ac) I:; - ( A  + C) If: + ib(I$$ - Jgi)  + ibcJ$;] = 0. (3.1) 
r=1 

Having divided the nth member of this set of equations by ,& which ensures 
convergence of its determinant we may write (3.1) in the matrix form 

[A, + iA, - A’B] a = 0, (3.2) 

where A’ = A + B7rbi. A’ has been chosen so as to make the elements of A, zero 
whenever n + r is even. In  this A,, A, and B are real matrices and are given by 

A, = [p i  1:; - cIF;], 

A, = [b(Igi - J f ;  + &TI$$) + bc( J$$ - +TI$‘$)], 
B = [I:; - cI:;]. 

We are now faced with the problem of determining the latent roots of a complex 
matrix. It appears, however, on closer inspection that this problem can be reduced 
to that of finding the latent roots of a real matrix. With reference to the Appendix 
we see that the matrices A, and B have zeros in the positions were n + r is odd and 
as we have arranged above, A, in the positions where n + r is even. If we define the 
matrices T and S as follows 

then the transformation a = T d  
puts (3.2) into the form [A - A’B] d = 0, 

A = A, + SA,. where 

The matrices A and B in (3.3) are real. 

(3.3) 
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4. Calculations and conclusion 
The infinite matrix equation (3.3) was approximated by its first N rows and 

columns. Once the basic matrices [I:;] etc. were computed it was a simple matter 
to vary the parameters b and c. A typical calculation for fixed values of b and c 
consisted of extracting the N latent roots of the abbreviated matrix. This 
calculation was repeated increasing the value of N until, to the prescribed 
accuracy, the first latent root was unchanged. The capacity of the computer used 
allowed N to be increased if necessary to the value N = 20. Although our primary 
interest was in the first latent root it was found that several higher roots were also 
accurately calculated. 

It is interesting to notice how the usual difficulty of dealing with large values of 
aR made itself felt in the matrix equation. We write (3.3) in the form 

In  this equation the only matrix affected by increase of aR, or equivalently b, 
is the matrix A,, every element of which is multiplied by b. However large a value 
is prescribed for b the (nr)th element of this matrix will tend to zero as n-+ 00 and 
r -+ 00 but if we are restricted to a finite N x N approximation to (4.1) it  is 
possible to choose b so large that the eventual dominance of the elements of A, 
does not appear. Thus if b is indefinitely increased in the N x N matrix we shall be 
evaluating approximations to the latent roots, not of the equation (4.1) but of 

Thus in analogy with the disappearance of the highest derivative in the Orr- 
Sommerfeld equation when aR -+ co the matrix A, disappears in our approximate 
matrix equation. The highest value of b that could be considered was that 
corresponding to aR = 1000. 

To the best of our knowledge this problem has not previously been the subject 
of an exact numerical investigation, except for the work of Southwell & Chitty 
mentioned above. However, extensive numerical approximations have been 
carried out by other authors and in this paragraph we compare our results with 
these. In  one trivial case, namely when CL = 0 and R is finite, exact solutions of 
the differential equation (1.2) are easily obtained and here the agreement with the 
present calculations is exact. As was mentioned in the introduction the work of 
Hopf, Southwell & Chitty and Grohne provide three other sources of comparison. 
In  table I our results are compared with those of Hopf. The error in the latter’s 
work, due to the approximations used by him, is generally estimated to be of the 
order of 10 %. This is found to be true for all but one of the compared values. 
Referring to the results of Southwell & Chitty a comparison is available when aR 
is small enough to allow c to be purely imaginary. From (1.4) and (3.2) this means 
that h’ is purely real when aR is sufficiently small. The insert of figure 1 shows this 
comparison. There A; and A; denote the first and second eigenvalues of (4.1) 
respectively. Finally, in the case a = 1, the value of aR at which [ ceases to be 
purely imaginary was calculated by the present method to be 66. A graph given 
by Southwell & Chitty (p. 209) also gives a value of 66, while the two graphs given 
by Grohne give the two different values of 68 and 76. 

[A,+SA,-h’B]d = 0. (4.1) 

[SA, - A’B] d = 0. 
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The results of the present calculations for the first eigenvalue appear in 
tables 2 to 4. These are illustrated in terms of the eigenvalue by figures 3 and 4. 

Although we have been able to proceed to considerably higher values of aR 
than most previous authors, we cannot proceed indefinitely for the reason given 
above. Thus we are unable to say for certain that shear flow is always stable, that 

CtR CL Re A; (Hopf) Re A; (present) 

0.125 0 3.99 4.00 
1 3.28 3.37 
2.5 2.22 2.19 

1.25 0 3.94 4.00 
1-075 3.06 3.30 
3.225 1.88 1.90 

12.5 0 3.20 3-93 
2.32 2.66 2.59 
4.64 2.07 2.11 

TABLE 1 

26( 

A’ 

I 

346 10 

I 

( u R ) ~  

FIGURE 1. Variation of h‘ with aR for the case a = 2; - - -, values obtained by 
Southwell & Chitty. 
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is to say that Im ( is always negative, but the trend of the results suggests this 
very strongly (see figure 3). Probably one of the most interesting aspects of the 
results obtained is the fact already mentioned that as aR is increased, keeping 
a fixed, the first eigenvalue is real and increasing for a while until it  reaches a 
certain value when, coinciding with another (real) eigenvalue, these split into a 

aR 
1 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 
300 

a = o  
4.00 
3.95 
3.87 
3.89 
4.11 
4.62 
5.56 
7.31 
10.2 
10.4 
10.8 
21.0 

= 0.5 
3.81 
3.79 
3.79 
3.89 
4.20 
4.82 
5.91 
8.12 
10.3 
10.6 
10.9 
- 

a = l  
3.37 
3.42 
3.57 
3.90 
4.48 
5.44 
7.16 
10.0 
10.4 
10.8 
11.3 
- 

u = 1.5 
2.89 
3-00 
3.34 
3.96 
4.98 
6.83 
9.18 
9.84 
10.5 
11.1 
11.8 
- 

a = 2  
2.50 
2.66 
3.16 
4.13 
6.18 
7.82 
8.75 
9.59 
10.4 
11.2 
12.0 
24.4 

a = 4  
1.70 
1-99 
3.08 
5.11 
5.98 
6.97 
7.93 
8.84 
9.71 
10.5 
11.4 
24.6 

TABLE 2. Re A; tabulated against a and aR 

~ = 6  
1.43 
1-82 
3.71 
4.79 
5.74 
6.71 
7.63 
8.49 
9.31 
10.1 
10.9 
23.5 

a = 8  
1-31 
1-77 
3.87 
4.66 
5.65 
6.60 
7.48 
8.31 
9-11 
9.88 
10.6 
22.8 

aR 
1 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 
300 

a = o  
0 
0 
0 
0 
0 
0 
0 
0 
2.80 
5.18 
7.04 
49.6 

a: = 0.5 
0 
0 
0 
0 
0 
0 
0 
0 
3.46 
5.62 
7.45 

a = l  
0 
0 
0 
0 
0 
0 
0 
2.56 
4.85 
6.70 
8.45 
- 

a: = 1.5 
0 
0 
0 
0 
0 
0 
2.52 
4-55 
6.34 
8.07 
9.82 
- 

a = 2  

0 
0 
0 
0 
0 
2.41 
4.18 
5.93 
7.69 
9.47 
11.3 
56.3 

a = 4  
0 
0 
0 
1.66 
3.34 
5.05 
6.93 
8-91 
11.0 
13.1 
15.2 
64.7 

TABLE 3. I m  A; tabulated against a and aR 

a = 6  
0 
0 
0 
2.47 
4.21 
6.13 
8.19 
10.3 
12.6 
14.8 
17.2 
69.4 

a = 8  

0 
0 
0.956 
2.86 
4.70 
6.77 
8.94 
11.2 
13.5 
15.9 
18.3 
72.2 

aR 200 300 400 500 600 700 800 900 1000 
Re A; 18.9 24.4 29.2 33.5 37.6 41.4 45.0 48.5 51.9 
I m h ;  32-4 56.3 82.0 109 136 165 194 223 253 

TABLE 4. Re hi and I m  A; tabulated against aR for the case a = 2 

complex conjugate pair. In  the case of a = 2 this behaviour is illustrated in 
figure 1, the first eigenvalue ceasing to be real when aR = 41.5. The physical 
interpretation, referring to figure 1 is that for aR < 41.5 a disturbance with wave 
number a = 2 corresponding to this eigenvalue will remain stationary relative to 
a line midway between the two plates, whereas if aR > 41.5 there will be two 
disturbances one moving upstream, the other downstream, with equal veloci- 
ties relative to this datum. This transition is quite abrupt and we felt it to be 

7 Fluid Mech. 13 
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aR 

FIGURE 2. The graph of a against aR for which the first two eigenvalues coincide. 

-1 

FIGURE 3. Variation of ImE with aR for various values of a. The first two eigenvalues 
coincide along the dotted line. 
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sufficiently interesting to include figure 2 where this critical value of aR is plotted 
against a. This transition curve is also included as the dotted line in figures 3 and 4. 

In  our notation Grohne concluded (as did Hopf) that as aR -+ m 

[+* l .  

Although the values of aR to which we have been able to proceed are limited, our 
calculations suggest that the first eigenvalue tends t o  +1 while the second 
eigenvalue tends to - 1. 

1 

tc 

Im E= 

6 5  
Rf 

FIGURE 4. Contours of constant Im c. The first two eigenvalues coincide along the dotted line. 

I n  conclusion the authors wish to acknowledge the helpful advice of Dr S. C .  R. 
Dennis of the University of Sheffield and to thank the Applied Mathematics 
Department of the Queen’s University of Belfast for allowing the use of its 
DEUCE digital computer. 
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Appendix 

The solutions of the differential system 

(i) Basic orthogonalfunctions Y,(r = 1,2 ,3 ,  ...) 

y i v - p 4 y  = 0, 

Y, = (coshp,. y - cosp,. y) - /3,.(sinhpr y - sinp,. y), 

Y = d Y / a y  = o at = o and = n, 

are 

where 
Gosh ,urn - cos ,urn and pr(r = 1,2 ,3 ,  ...) ” =sinhprn-sinprn’ 

are the roots of the equation coshpn c o s p  = 1. 

(ii) Evaluation of integrals I% etc. 

The value of the basic integrals is given by: 

10, when r + n is even, 

when r + n  is odd; 

Lnp: p: - 2pnPn, when r = n; 

(0, when r + n is even, r =I= n, 

[n2/2, when r = n; 


